

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 3rd Semester Examination, 2021

CC6-PHYSICS

THERMAL PHYSICS

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1.		Answer any <i>five</i> questions from the following:	$1 \times 5 = 5$
	(a)	Give reasons whether an electric capacitor is a thermodynamic system or not.	1
	(b)	The density of H ₂ gas at N.T.P is 8.96×10^{-5} g/cc. Calculate r.m.s velocity of O ₂ molecules at N.T.P.	1
	(c)	Can Carnot engine function as a heat pump?	1
	(d)	What is quasi-static process? Give example.	1
	(e)	What are the units of reduced volume and reduced temperature?	1
	(f)	Prove that $\left(\frac{\partial P}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial P}{\partial T}\right)_V$	1
	(g)	State how viscosity and thermal conductivity are related.	1
	(h)	How does viscosity of gas vary with temperature and pressure?	1

GROUP-B

Answer any *three* questions from the following $5 \times 3 = 15$

- 2. (a) From the four thermodynamic potentials, establish the Maxwell's four 2+3 thermodynamical relations.
 - (b) Calculate change in melting point of ice at 0°C when the pressure is increased by 2 atmosphere. How much pressure is required to lower the melting point by 1°C? Given the latent heat of fusion = 80 Cal/g and specific volumes of water and ice are 1.0001cc and 1.0908cc respectively.

UG/CBCS/B.Sc./Hons./3rd Sem./Physics/PHYSCC6/2021

- 3. (a) What is Brownian motion? Give the essential features of the motion. Write down 2+3 the Einstein's equation for Brownian motion.
 - (b) The coefficient of viscosity of a gas is $16.6 \times 10^{-6} \text{ Ns}^{-1} \text{m}^{-1}$. Calculate the mean free path, frequency of collisions and the diameter of the gas molecules. Given $\tau = 450 \text{ ms}^{-1}$, $\rho = 1.25 \text{ kg m}^3$ and number density is 2.7×10^{25} molecules m⁻³.
- 4. What do you mean by collision probability? Show that the probability of a gas 1+4 molecule traversing a distance *x*, without collision, is $e^{-x/\lambda}$ where λ is the mean free path of the gas molecule.
- 5. (a) Write down the relation between entropy and unavailable energy in an 1+4 irreversible process.

2+2+1

- (b) Find the increase in entropy when 1 kg of water at 273 K is mixed with 1 kg of water at 373 K. Given specific heat of water: 4.2×10³ J/kg/°C.
- 6. (a) Prove that:

(i)
$$U = \left\{ \frac{\partial (F/T)}{\partial (1/T)} \right\}_{V}$$
 (ii) $F = \left\{ \frac{\partial (G/P)}{\partial (1/P)} \right\}_{T}$

- (b) For a two phase system in equilibriums p is a function of T only so that $\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial p}{\partial T}\right)_S$. If E_s be the adiabatic elasticity show that $E_S C_V = TV \left(\frac{\partial p}{\partial T}\right)^2$.
- (c) Prove that maximum number of phases that can co-exist in equilibrium is 3 for an one component pVT system.

GROUP-C

		Answer any two questions from the following	$10 \times 2 = 20$
7.	(a)	Deduce Maxwell's speed distribution law for 2-dimensional gas.	4
	(b)	Explain graphically why Maxwell's distribution curve is broadened with increase in temperature.	3
	(c)	Using Maxwell distribution in 3-dimension, find the mean of the reciprocal velocity of a molecule.	3
8.	(a)	Represent a Carnot cycle on (i) <i>P-V</i> diagram, (ii) <i>S-T</i> diagram and hence find the efficiency of a Carnot Cycle.	$1\frac{1}{2}+2\frac{1}{2}$
	(b)	Show for an irreversible process, the net change of entropy will be positive.	3
	(c)	A reversible engine converts $\frac{1}{6}$ th of the heat input into work. If the temperature	3
		of the sink is reduced by 62°C, its efficiency is doubled. Find the temperature of the source and the sink.	

UG/CBCS/B.Sc./Hons./3rd Sem./Physics/PHYSCC6/2021

9. (a) Write down the relation among *F*, *G*, *H* and prove that $G = H + T \left(\frac{\partial F}{\partial T}\right)_{V}$ 2+2

(b) Prove that
$$\left(\frac{\partial C_P}{\partial P}\right)_T = -T\left(\frac{\partial^2 V}{\partial T^2}\right)$$
 2

(c) Why $C_P > C_V$? Explain it physically.

(d) Show that
$$\frac{dL}{dT} = \frac{L}{T} + C_f - C_i$$
 2

Where, C_f : Specific heat of liquid

 C_i : Specific heat of saturated vapour,

L: Latent heat of liquid

10.(a) State and prove the Virial theorem.

(1+3)

2

- (b) Use this theorem to obtain the equation of state of an ideal gas. 3
- (c) The Van-der Wall's constants for helium have the following values 3 $a = 3.44 \times 10^{-10}$ dynes cm⁻⁴mole⁻² and b = 23.4 cc mole⁻¹. Calculate the critical constants for helium.

____×____